Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics
نویسندگان
چکیده
Isolation of low abundance proteins or rare cells from complex mixtures, such as blood, is required for many diagnostic, therapeutic and research applications. Current affinity-based protein or cell separation methods use binary 'bind-elute' separations and are inefficient when applied to the isolation of multiple low-abundance proteins or cell types. We present a method for rapid and multiplexed, yet inexpensive, affinity-based isolation of both proteins and cells, using a size-coded mixture of multiple affinity-capture microbeads and an inertial microfluidic particle sorter device. In a single binding step, different targets-cells or proteins-bind to beads of different sizes, which are then sorted by flowing them through a spiral microfluidic channel. This technique performs continuous-flow, high throughput affinity-separation of milligram-scale protein samples or millions of cells in minutes after binding. We demonstrate the simultaneous isolation of multiple antibodies from serum and multiple cell types from peripheral blood mononuclear cells or whole blood. We use the technique to isolate low abundance antibodies specific to different HIV antigens and rare HIV-specific cells from blood obtained from HIV+ patients.
منابع مشابه
Inertial Microfluidics for Multiplexed Affinity Separation of Proteins and Cells
We present an inertial microfluidic platform for rapid, multiplexed affinity purification of proteins and cells from complex mixtures. Beads of different sizes, coated with different bait molecules bind specific proteins or cells in a single reaction step and the bound targets are then size-sorted by flowing in a spiral microchannel. We use this scheme to simultaneously purify antibodies specif...
متن کاملDynamics analysis of microparticles in inertial microfluidics for biomedical applications
Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...
متن کاملA Biotechnological Perspective on The Affinity Magnetic Separation and Purification Based on Oligonucleotides
The rapidly growing field of biotechnology has created a critical need for simple, fast andhigh-throughput processes for the separation and purification of biomolecules from biologicalmatrices. In recent years, several bioseparation techniques have been proposed as advancedalternatives to the classical separation methods. These modern processes emphasize ultrahighselective and sensitive analysi...
متن کاملInertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel
This paper presents an inertial microfluidic device with a simple serpentine micro-channel to continuously separate particles with high performance. Separation of micro/nano-particles has a variety of potential applications in biomedicine and industry. Among the existing separation technologies, a label-free technique without the use of antibody affinity, filter or centrifugation is highly desi...
متن کاملElasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics
BACKGROUND Bloodstream infections (BSI) remain a major challenge with high mortality rate, with an incidence that is increasing worldwide. Early treatment with appropriate therapy can reduce BSI-related morbidity and mortality. However, despite recent progress in molecular based assays, complex sample preparation steps have become critical roadblock for a greater expansion of molecular assays. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016